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• Landau Fermi liquid (FL) theory provides a paradigm for understanding electron transport in 

metallic systems

• However, nowadays many correlated electron systems show deviations from FL behavior. For 

example, T-linear resistivity observed in different electron systems
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• Understanding the transport properties of electrons near QCP remains one of the challenges in the 

study of strongly correlated electron systems

𝑌𝐵𝐶𝑂
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• In addition to dc resistivity, optical responses of correlated electron systems also provide valuable 

information on the dynamics of electrons near QCP through optical conductivity 𝜎(Ω, 𝑇)

Explore wide frequency range and extract possible Ω/𝑇 scaling in 𝜎′(Ω, 𝑇)

e.g. 𝜎′(Ω) ∝ 1/Ω𝛼 with (𝛼 ≈ 1) observed for underdoped/optimally 
doped cuprates and iron-based superconductors, probably dual to 𝑇-
linear dc resistivity (although other exponents of 𝛼 are observed), see 
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D. Basov et al. RMP 83, 471 (2011); 

D. Basov, T. Timusk, RMP 77,721 (2005) ; 

D. van der Marel et al. Ann. Phys. 321 (2006) 1716-1729; 

D. Maslov, A. Chubukov, Rep. Prog. Phys. 80(2017) 026503…
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• Optical conductivity 𝜎(Ω, 𝑇) is commonly used probe to extract electron dynamics in correlated 

materials

• Drude formula (phenomenological): 𝜎′(Ω, 𝑇) ∝ 1
Ω2𝜏𝐽(Ω,𝑇)

at Ω ≫ 1/𝜏𝐽
FL: 𝜏𝐽

−1(Ω, 𝑇) ∝ 𝑚𝑎𝑥{Ω2, 𝑇2} 𝜎′(Ω ≫ 𝑇) ∝ const; 𝜎′(Ω ≪ 𝑇) ∝ 𝑇2/ Ω2

• Optical conductivity of a FL: 𝜎′ Ω, 𝑇 ∝ Ω2+4𝜋2𝑇2
Ω2

(Gurzhi, Sov. Phys. JETP 35, 673(1959); Maslov, Chubukov, Rep. Prog. Phys. 80(2017) 026503; PRB 86,   

155137 (2012))

Maslov, Chubukov, Rep. Prog. 

Phys. 80(2017) 026503

Part I: Introduction



• Existing theoretical works:

1. Y. B. Kim, A. Furusaki, X.-G. Wen, and P. A. Lee, Gauge- invariant response functions of fermions coupled to a gauge 
field, Phys. Rev. B 50, 17917 (1994). 𝜎′(Ω, 0) ∝ 1

Ω2/3

2. A. V. Chubukov and D. L. Maslov, Optical conductivity of a two-dimensional metal near a quantum critical point: The 
status of the extended Drude formula, Phys. Rev. B 96, 205136 (2017). 𝜎′(Ω, 0) ∝ 1

Ω2/3

3. H. Guo, A. A. Patel, I. Esterlis, and S. Sachdev, Large-N theory of critical Fermi surfaces. II. Conductivity, Phys. Rev. B 

106, 115151 (2022). 𝜎′(Ω, 0) ∝ const

4. Z. D. Shi, H. Goldman, D. V. Else, and T. Senthil, Gifts from anomalies: Exact results for Landau phase transitions in 

metals, SciPost Phys. 13, 102 (2022). 

5. Z. D. Shi, D. V. Else, H. Goldman, and T. Senthil, Loop current fluctuations and quantum critical transport, SciPost
Phys. 14, 113 (2023). 𝜎′(Ω, 0) ∝ 1

Ω2/3

• Optical conductivity of a NFL, e.g. a clean metal near Ising-nematic QCP (𝐷 = 2, 𝑧 = 3, 𝑞 = 0):

1/𝜏𝑞 ∽ Σ′′ ∝ Ω2/3 1
𝜏𝐽
∽ 𝑞2

𝑘
𝐹
2
Σ′′ ∝ Ω2/3Ω2/3 = Ω4/3

then based on Drude formula, 𝜎′(Ω, 0) ∝ 1
Ω2𝜏𝐽

∝ Ω−2/3



• Quantum Critical Point (QCP)

𝑇

𝛿: tuning parameter, e.g. pressure, 

doping, composition, magnetic field…𝛿𝑐

Ordered phase Disordered phase

FL

Quantum critical 

phase

NFL

𝑧 = 3 QCP: 𝑉(𝒒,Ω𝑚)~ 1
𝑞2+𝜉−2+𝛾|Ω𝑚|/𝑞

(Landau damped critical boson, Hertz-Millis-Moriya theory)

𝜉: correlation length, 𝜉 → ∞ at QCP

Approach criticality from the FL side (𝜉 < ∞ ), crossover to quantum critical regime: 𝜉−1 → max{𝜔
1
3, 𝑇

1
3 }

QCP

Part II: Optical conductivity near Ising-nematic QCP



Songci Li, Prachi Sharma, Alex Levchenko, Dmitrii Maslov, Phys. Rev. B 108, 235125 (2023)

(see also Yasha Gindikin, Andrey Chubukov, Phys. Rev. B 109, 115156, (2024))

Convex FS Concave FS 

( with inflection points) Crossover from 

convex to concave FS

𝜀(𝑘) = −2𝑡(𝑐𝑜𝑠𝑘𝑥 + 𝑐𝑜𝑠𝑘𝑦) +
4𝑟𝑡𝑐𝑜𝑠𝑘𝑥 𝑐𝑜𝑠𝑘𝑦
convex to concave transition: 𝜀 =
𝜀𝑐 = 8𝑟(2𝑟2 − 1)



1. Model Hamiltonian

𝐹(𝒌): Form factor projecting interaction into 

a given angular momentum channel 

2. Current density operator

3. Kubo formula

Orenstein-Zernike form,

nearly critical FL

Rosch, Howell, PRB 2005

Rosch, Ann. Phys. 2006 
𝑞𝐵 → max{𝜔

1
3, 𝑇

1
3 }



4. K operator

5. Optical conductivity:



• Why does the geometry of FS matter? 𝜎′ 𝜔, 𝑇 ∝< ∆𝒗2 > 𝛿(Ω + 𝜀𝒌 − 𝜀𝒌−𝒒)𝛿(Ω − 𝜔 − 𝜀𝒑 + 𝜀𝒑+𝒒)

∆𝒗 = 𝒗𝒌+𝒗𝒑 − 𝒗𝒌−𝒒 −𝒗𝒑+𝒒

Isotropic FS

(nonparabolic)

• Isotropic FS but nonparabolic dispersion: ∆𝒗 vanishes if all momenta 

are placed onto the FS, need to expand around the FS

• Optical conductivity

Extrapolating to QCP: 𝜎′ 𝜔, 0 ∝ 𝜔2/3

• ∆𝒗 vanishes identically for Galilean-invariant system (quadratic dispersion)

𝜎′(𝜔, 𝑇) ∝ 1
𝜔2𝜏𝐽(𝜔,𝑇)

, 𝜏𝐽
−1 𝜔, 𝑇 ∝ 0 × 𝑚𝑎𝑥{𝜔2, 𝑇2}+ const × 𝑚𝑎𝑥{𝜔4, 𝑇4}

In terms of Drude formula:



• Why does the geometry of FS matter?

Convex FS

𝜎′ 𝜔, 𝑇 ∝< ∆𝒗2 > 𝛿(𝜀𝒌 − 𝜀𝒌−𝒒)𝛿(𝜀𝒑 − 𝜀𝒑+𝒒)
∆𝒗 = 𝒗𝒌+𝒗𝒑 − 𝒗𝒌−𝒒 −𝒗𝒑+𝒒

• 𝜀𝒌 = 𝜀𝒌−𝒒, 𝜀 ҧ𝒑
= 𝜀 ҧ𝒑−𝒒

( ҧ𝒑 = −𝒑, TRS)

intersection points of the original FS and the one 

shifted by 𝒒, at most two intersection points (see (a)) 

for a convex FS

Two sets of solutions must coincide

𝜎′ 𝜔, 0 ∝ 𝜔2/3

• Only two possible choices: 

1) swap scattering, 𝒌 = 𝒑 + 𝒒 (see (b))

2) Cooper (head-on) scattering, 𝒌 = −𝒑 (see (c))

Both lead to ∆𝒗 = 0.  Need to expand from the FS, ∆𝒗2~[max(𝜔, 𝑇)]2, similar to the isotropic case

At QCP:



Concave FS

• 𝑁 > 2 intersection points for a concave FS

• Two of the channels are still head-on (a) and 

swap scattering (b), but rest of the scattering 

channels do relax current, ∆𝒗 ≠ 0

𝜎′ 𝜔, 0 ∝ 𝜔−2/3

• Why does the geometry of FS matter?
𝜎′ 𝜔, 𝑇 ∝< ∆𝒗2 > 𝛿(𝜀𝒌 − 𝜀𝒌−𝒒)𝛿(𝜀𝒑 − 𝜀𝒑+𝒒)

∆𝒗 = 𝒗𝒌+𝒗𝒑 − 𝒗𝒌−𝒒 −𝒗𝒑+𝒒

Convex to concave FS

𝜎′ 𝜔, 0 ∝ Θ(∆) ∆7/2
𝜔2/3

+𝜔2/3

Δ = 𝜖𝐹 − 𝜖𝑐 < 0: 𝑐𝑜𝑛𝑣𝑒𝑥; > 0: 𝑐𝑜𝑛𝑐𝑎𝑣𝑒

• Even for a concave FS, the kinematic constraint 𝜀𝒌 = 𝜀𝒌−𝒒
has more than 2 solutions only if 𝒒 is near high symmetry 

axis and 𝑞 being small

∆𝜙𝒒 ∝ Δ3/2, 𝑞𝑚𝑎𝑥∝ ∆1/2, (Δ𝒗)2∝ (𝑞Δ)2

Extrapolating to QCP: 

𝜎′ 𝜔, 𝑇 ∝ 𝑞𝐵
−2𝜔2 + 4𝜋2𝑇2

𝜔2



Yasha Gidishin, Songci Li, Alex Levchenko, Alex Kamenev, Andrey Chubukov, Dmitrii Maslov, 
arXiv: 2406.10503, accepted in PRB

Two-valley system 

(Multipli-connected FS)

Kinematic constraint 𝜀𝒌 = 𝜀𝒌−𝒒 has

𝑁 > 2 intersection points, similar to 

a concave FS

Expect in the FL regime:

𝜎′ 𝜔, 𝑇 ∝ 𝜔2 + 4𝜋2𝑇2
𝜔2

𝜏𝐽
−1 𝜔, 𝑇 ∝ const × 𝑚𝑎𝑥{𝜔2, 𝑇2}

We provide a diagrammatic derivation of 

optical conductivity based on Kubo formula

• One of the bands (band 1) is tuned near Ising-nematic QCP, 

while the other band (band 2) acts as a “momentum sink” for 

band 1 (two bands are isotropic but nonparabolic)

Bare Hubbard 

interaction

• RPA for dressed interaction Ƹ𝑉

Assuming band 2 is noninteracting, 𝑣22 = 0; 

Expand to 𝑂(𝑣
12
2 )



Intraband 1: 𝑉11

Intraband 2: 𝑉22

Interband: 𝑉12

𝑣11𝑉11 𝑣12

𝑉12

𝑉22

Π11
Π22

Band 1 Band 2

• Though the bare intra-band interaction in band 

2  was neglected, the coupling to band 1 gives 

rise to an effective interaction within band 2



𝑎) + 𝑏): dimensionless interband coupling 𝜆12 = 𝑁𝐹1𝑁𝐹2𝑣12
2

c):

Crossover to QCP:  𝑞𝐵 → 𝜔1/3

Band 1： Band 2：

Interband

Current Vertex:

Green’s function:

2D:
𝜎′ 𝜔 ∝ 𝜔−2/3



Part III: Summary

• Optical conductivity 𝜎′ 𝜔, 𝑇 of a NFL: a 2D clean metal near Ising-nematic QCP 

(𝑧 = 3, 𝑞 = 0), 𝜔- and 𝑇-dependence sensitive to the geometry of Fermi surface

Convex FS:                             Concave FS: 

• Optical conductivity 𝜎′ 𝜔, 𝑇 of a two-valley system near Ising-nematic QCP

𝜎′ 𝜔, 0 ∝ 𝜔2/3 𝜎′ 𝜔, 0 ∝ 𝜔−2/3
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